Главная » Большой астрономический словарь


13:41
Большой астрономический словарь
Линза
Прозрачное оптическое устройство, которое изменяет направление проходящего через него луча света. Для различных целей разработаны разные типы линз. Выпуклые и двояковыпуклые линзы заставляют параллельные лучи света сходиться в точке фокуса. Вогнутые и двояковогнутые линзы отклоняют параллельные лучи. Линзы часто используются в комбинации, позволяя достичь таких результатов, которые недоступны для отдельной линзы (например, в окуляре телескопа). Линзы могут изготовляться из отдельных элементов, соединенных вместе: дублеты и триплеты - линзы, составленные соответственно из двух и трех элементов. Сложные линзы, изготавливаемые из различных сортов стекла, используются для уменьшения хроматической аберрации. Линза объектива любого телескопа-рефрактора представляет собой устройство, собирающее световые потоки.

Линза Барлоу
Отклоняющаяся линза, используемая вместе с окуляром телескопа. Линза Барлоу увеличивает эффективное фокусное расстояние телескопа, так что окуляр дает большее увеличение.

Линзообразная галактика
Галактика типа S0 по классификации Хаббла, промежуточное звено между эллиптическим и спиральным типами, называемая так из-за своего внешнего вида. Галактики этого типа похожи на двояковыпуклую линзу.

Линии D
Близкая пара сильных спектральных линий в желтой области спектра натрия. Название происходит от буквенных обозначений, данных Йозефом фон Фраунгофером заметным линиям поглощения в солнечном спектре. Длина волны - 589,0 и 589,6 нм.
См.: фраунгоферовы линии.

Линии H и K
Самые сильные линии в видимом спектре ионизированного кальция, лежащие в фиолетовой части спектра на длинах волн 393,4 и 396,8 нм. Они являются заметными особенностями в спектрах многих звезд, включая Солнце. Обозначения H и K были даны Фраунгофером и все еще широко используются.
См.: фраунгоферовы линии.

Линия (linea, мн. lineae)
Продолговатая деталь на планетарной поверхности.

Линия 21 см
Характерное радиоизлучение (или поглощение) нейтрального водорода в межзвездном пространстве на длине волны 21 см.
Нейтральный водород - главный компонент межзвездной среды, так что наблюдения в линии 21 см оказываются важным методом анализа распределения, плотностей и скоростей вещества в нашей собственной Галактике и в тысячах других галактик. Эта линия была первой спектральной линией, которая была обнаружена радиоастрономическими методами (в 1951 г.). Радионаблюдения линии 21 см теперь являются основным средством исследования структуры галактик. Небольшое изменение энергии в водородном атоме, ответственное за 21-сантиметровое излучение, в естественных условиях имеет довольно низкую вероятность появления. Отдельный возбужденный водородный атом может находиться в таком состоянии около 12 млн. лет, прежде чем в нем произойдет спонтанный переход на более низкий уровень. Однако излучение межзвездного водорода наблюдается достаточно хорошо, поскольку имеется огромное количество возбужденных атомов, которые сталкиваются между собой, в результате чего и происходят переходы.

Линия K
См.: фраунгоферовы линии.

Линия альфа водорода (H альфа; H?)
Наиболее заметная линия в видимой части спектра водорода. Ведущая линия серии Бальмера с длиной волны 656,28 нм, имеющая красный цвет. Возникает в результате перехода между вторым и третьим энергетическими уровнями в атоме водорода.
См.: бальмеровские линии.

Линия поглощения
Резкое падение интенсивности на узком участке длин волн в непрерывном спектре. В спектре, который получается с помощью обычного спектрографа, в котором перед тем, как разложить на цвета, свет пропускают через узкую щель, линии поглощения выглядят как темные линии, идущие поперек цветной полосы спектрального разложения.
Линии поглощения присутствуют в спектрах большинства звезд. Для излучения Солнца они известны как фраунгоферовы линии. Атомы способны поглощать излучение на нескольких вполне определенных длинах волн. Длины волн, на которых происходит поглощение, различны для каждого химического элемента. Это делает возможным идентифицировать элементы, представленные в веществе звезды (или другого небесного тела), путем анализа спектральных линий, присутствующих в спектре. Мощность линий можно использовать для того, чтобы оценить количество химического элемента, хотя и не непосредственно, поскольку на мощность линий поглощения в спектре сильно влияют температура, плотность и другие физические условия.
См.: эмиссионная линия.

Линней (Linne)
Небольшой лунный кратер 2,4 км в диаметре, расположенный в море Ясности. Утверждение астрономов середины XIX в., что близкий компаньон этого кратера (кратер Линней В) со временем исчез, кажется ошибочным, так как это наблюдение подтверждений не получило. Небольшой по размерам кратер Линней все же заметен относительно хорошо, т.к. он окружен яркой областью, - возможно, небольшой областью выбросов.

Лира (Lyra)
Небольшое, но хорошо заметное созвездие в северном полушарии, внесенное в список 48 созвездий Птолемея (ок. 140 г. н.э.). Самая яркая звезда созвездия Вега имеет нулевую звездную величину, являясь пятой по яркости звездой в небе. Имеются и три других звезды ярче 4-й звездной величины. Эпсилон Лиры является "двойной двойной", состоящей из двух довольно далеко отстоящих друг от друга пар близких двойных звезд. Созвездие Лиры включает также одну из самых известных планетарных туманностей - туманность "Кольцо".
См.: Таблица 4.

Лириды
Ежегодный метеорный поток, иногда называемый апрельскими Лиридами. Его радиант лежит на границе созвездий Лиры и Геркулеса. Пик метеорного ливня приходится на 22 апреля, обычное время его появления - с 19 по 25 апреля. Метеорный поток связан с кометой Тэтчера (C/1861 G1). Хотя обычно метеорный поток бывает слабым, иногда наблюдаются красивые ливни. Исторически метеорный поток Лирид прослеживается в течение 2500 лет.

Лиситея
Небольшой спутник Юпитера (номер X), открытый С.Б. Николсоном в 1938 г. Спутник имеет всего 36 км в поперечнике и принадлежит к группе четырех спутников, чьи близко расположенные орбиты лежат на расстояниях от 11,1 до 11,7 млн. км от Юпитера. (Другие - Леда, Гималия и Элара).
См.: Таблица 6.

Лисичка (Vulpecula)
Слабое созвездие, лежащее рядом с созвездием Лебедя. Было введено Иоганном Гевелием в 1690 г. под более длинным названием Vulpecula et Anser (Лиса и Гусь). В созвездии нет звезд ярче 4-й звездной величины, но оно включает планетарную туманность, известную как туманность "Гантель".
См.: Таблица 4.

Литосидерит
Альтернативное название железо-каменного метеорита.

Литосфера
Твердый внешний слой планетарного тела, включающий кору и часть верхней мантии, которая лежит выше менее твердой астеносферы.

Личное уравнение
Систематическая ошибка в наблюдениях, вносимая конкретным индивидуумом.

Ложное солнце (паргелий)
Круглое пятно света в небе на расстоянии 22° от Солнца. Ложные солнца обычно появляются парами, по обе стороны от истинного Солнца, на круглом световом гало, хотя в зависимости от обстоятельств одно из ложных солнц может быть намного ярче другого. Этот эффект вызывается преломлением солнечного света ледяными кристаллами в атмосфере Земли.

Ложный Крест
Астеризм в форме креста в южных созвездиях Киля и Парусов, состоящий из звезд Эпсилон и Иота Киля и Дельта и Каппа Парусов. Название возникло в связи с тем, что его можно перепутать с близлежащим созвездием Южного Креста.

Локи (Loki)
Вулканический центр на Ио, который находился в активном состоянии во время пролетов АМС "Вояджер-1" и "Вояджер-2" в 1979 г.

Луна
Естественный спутник.

Луна
Единственный естественный спутник Земли. Изучение и составление карты поверхности Луны активно проводилось как с Земли, так и с космических аппаратов. Данные, полученные АМС "Вояджер"при полетах к Юпитеру, Сатурну и Урану, подтвердили, что Луна является типичным для Солнечной системы естественным спутником. Ее изрытая кратерами поверхность - бесплодный мир без воды и без атмосферы. В этом непосредственно убедились американские астронавты, которые в 1969-72 гг. высаживались на поверхность Луны в ходе программы "Аполлон".
Благодаря приливным силам Луна всегда обращена к поверхности Земли одной стороной, за исключением незначительного эффекта либрации. По мере того, как Луна в течение месяца обращается вокруг Земли, происходит знакомый всем цикл смены фаз. Луна светит только отраженным солнечным светом. С Земли видна лишь часть освещеной стороны Луны, которая в течение периода обращения Луны непрерывно изменяется из-за изменения относительной конфигурации Земли, Луны и Солнца.
На обращенной к Земле стороне Луны различают два основных типа поверхности: более светлые возвышенные области (или "земли"), сильно изрытые кратерами, и более темные и не столь богатые кратерами "моря". Моря имеют примерно округлые очертания, поскольку они образовались на ранних стадиях истории Луны в результате ударных воздействий больших метеоритов. В дальнейшем характер поверхности формировался выбросами. Значительные пространства на Луне покрыты веществом, выброшенным из больших бассейнов - Дождей и Восточного.
Происхождение Луны не выяснено, но как отдельное тело она существует около 4500 млн. лет. На раннем этапе жизни Луны ее вещество разогрелось и расплавилось. По мере охлаждения образовалась кора, которая под ударами большого числа метеоритов покрылась многочисленными кратерами, самые обширные из которых превратились в морские бассейны. Впоследствии они заполнились темными базальтовыми лавами. Существенная вулканическая деятельность прекратилась, по крайней мере, 2000 млн. лет назад.
На обратной стороне Луны (в отличие от обращенной к Земле) больших заполненных лавой морей нет.
См.: Таблица "Естественные спутники больших планет".

"Луна"
Ряд советских космических зондов, направленных к Луне в 1963-1976 гг. Первые три из них получили название "Лунник". "Луна-9" в январе 1966 г. совершила первую мягкую посадку на Луне в океане Бурь. "Луна-10" в марте 1966 г. стала первым орбитальным спутником Луны. "Луна-16" в сентябре 1970 г., а затем "Луна-20" в 1972 г. и последняя в этой серии " Луна-24" в августе 1976 г. доставили на Землю образцы лунного грунта. "Луна-17 и -21" доставили на поверхность Луны луноход - подвижное транспортное средство для перемещений по ее поверхности. Успешными были также полеты "Луны-11, -12 и -13" (1966 г.), "Луны-14" (1968 г.), "Луны-19" (1971 г.) и "Луны-22" (1974 г.).

"Лунар Орбитер" ("Лунный орбитальный аппарат")
Серия американских лунных зондов, запущенных в 1966 и 1967 гг. с целью картирования Луны и определения подходящих мест для посадки пилотируемых кораблей по программе "Аполлон". Это было первое систематическое исследование поверхности Луны, и все пять полетов серии были очень успешными. Для фотографирования использовалась обычная фотографическая пленка, которая автоматически проявлялась на борту и сканировалась с тем, чтобы информация могла передаваться на Землю.

"Лунар Проспектор" ("Лунный наблюдатель")
Космический аппарат NASA, запущенный в ноябре 1997 г. Планируется, что он проведет один год на орбите вокруг Луны с целью картирования химического состава лунной поверхности и магнитного поля и поля тяготения Луны.

Лунация
Полный цикл фаз Луны, который занимает один синодический месяц, равный 29,53059 суток.

Лундская обсерватория
Обсерватория в Швеции, основанная в 1672 г. Существующие здания в центре г. Лунд построены в 1867 г. Станция наблюдения теперь расположена в 18 км от Лунда, а ее главный инструмент - 61- сантиметровый рефлектор.

"Лунник"
Название первых трех лунных зондов, запущенных в Советском Союзе в январе, сентябре и октябре 1959 г. "Лунник-1" прошел около Луны на расстоянии 5000 км. "Лунник-2" потерпел катастрофу около кратера Архимед, но "Лунник-3" передал на Землю первые изображения обратной стороны Луны. Последующие зонды этой серии имели название "Луна", причем серия начиналась с "Луны-4".

Лунно-солнечная прецессия
См.: прецессия.

Лунное затмение
См.: затмение.

Лунный вездеход (LRV)
Питаемое от батарей транспортное средство для перемещения по поверхности Луны, использованное в трех последних проектах программы "Аполлон" ("Аполлон-15, -16 и -17"). Вездеходы были доставлены на Луну, поскольку в предыдущих полетах астронавты испытывали трудности из-за отсутствия хороших средств передвижения. Общая протяженность поездок, совершенных астронавтами "Аполлона-15, -16 и -17", составила соответственно 28, 27 и 35 километров.

Лунный параллакс
Средняя величина экваториального горизонтального параллакса Луны (суточный параллакс), которая равна 3422,45 дуговых секунды.

"Луноход"
Автоматизированное транспортное средство, доставленное на поверхность Луны в ходе двух советских беспилотных полетов ("Луна-17 и -21"). "Луноход-1" был доставлен "Луной-17" в западную часть моря Дождей 17 ноября 1970 г. и использовался в течение 10 месяцев. "Луноход-2" был высажен с "Луны-21" в восточной части моря Ясности 16 января 1973 г., где работал в течение четырех месяцев. Общее пройденное расстояние составило 10,5 и 37 км соответственно. "Луноход" имел восемь колес и был оборудован фотокамерами, системой связи, лазерным отражателем, магнитометром, солнечными батареями и датчиками космических лучей.

Луч
Светлая линейная деталь на поверхности небесных тел, простирающаяся в радиальном направлении от кратера. Так, многие лунные кратеры окружены обширными и заметными системами лучей, которые можно обнаружить на полном диске Луны невооруженным глазом. Системы лучей связаны с самыми молодыми кратерами, например, с кратерами Тихо и Коперник. Такие системы могут быть образованы породами, выброшенными на поверхность при недавних ударных воздействиях; они отражает больше света, чем старые поверхности, в течение миллионов лет подвергавшиеся эрозии. Другая точка зрения состоит в том, что лучи образованы выбросами стекловидной массы с большим коэффициентом отражения.
Лучи обнаружены у кратеров на некоторых других телах Солнечной системы.

Луч (2)
Область неба, наблюдаемая в некоторый момент радиотелескопом.

Лучевая скорость
Скорость объекта относительно наблюдателя, измеренная вдоль луча зрения. Чтобы определить истинную скорость объекта в пространстве, необходимо знать также их скорость по направлению, перпендикулярному к лучу зрения. Для звезд, галактик и других астрономических объектов определить лучевую скорость часто намного легче, чем "поперечную". Это объясняется наличием доплеровского эффекта.
См.: собственное движение.

Лучистый перенос
Процесс, посредством которого энергия электромагнитного излучения передается веществу, с которым это излучение взаимодействует. При лучистом переносе происходит непрерывное поглощение фотонов и их повторное излучение атомами вещества.
Попросту говоря, закон сохранения энергии означает следующее. Количество энергии, выделенной некоторым объектом, равно энергии, поступившей в него извне, плюс энергия, генерируемая в нем, минус энергия, поглощенная им. Это положение может быть записано математически, но воспользоваться такой записью будет трудно из-за сложности описания процессов взаимодействия между веществом и электромагнитным излучением.

Лучистое давление
Давление потока фотонов на вещество, при котором происходит передача импульса. В астрономии лучистое давление существенно тогда, когда имеют место большие потоки излучения, например, во внешних слоях звезды. В межзвездной среде лучистое давление на зерна пыли может быть сильнее локального гравитационного поля. Так, в пределах Солнечной системы лучистое давление Солнца выталкивает самые маленькие частицы вещества вовне.
См.: эффект Пойнтинга-Робертсона.

М

"Магеллан"
Орбитальный космический зонд США, запущенный 4 мая 1989 г. к Венере с шаттла "Атлантис". В его задачи входило составление карты по крайней мере 70% поверхности Венеры с разрешением в несколько сотен метров с помощью радиолокатора синтеза апертур. Применение радиолокационных методов наблюдения обусловлено тем, что Венера постоянно закрыта непрозрачными облаками. "Магеллан" достиг Венеры 10 августа 1990 г., и первая часть его программы, продолжавшаяся 243 дня и позволившая картировать 84% поверхности планеты, была успешно завершена в мае 1991 г. Следующая фаза программы предусматривала наблюдения, необходимые для заполнения пробелов на карте и получения более детальных изображений.
Предыдущие исследования показали, что около 80% поверхности Венеры покрыты потоками вулканической лавы. Изображения, полученные "Магелланом", дали возможность исследовать эти структуры гораздо более детально. Был идентифицирован целый ряд больших щитовых вулканов и ударных кратеров (один из которых имеет в диаметре 275 км), а также множество деталей, характерных только для Венеры. Огромный объем данных, переданных "Магелланом", существенно пополнил наши сведения о поверхности Венеры.

Магелланов поток
Длинное волокно нейтрального водородного газа, протянувшееся на 200000 световых лет между Магеллановыми Облаками и нашей Галактикой. Оно образует в южном небе дугу длиной 150°. Возможно, это волокно состоит из газа, "вытянутого" из Магеллановых Облаков в результате приливного взаимодействия с Галактикой.

Магеллановы Облака
Две небольших неправильных галактики, которые являются спутниками нашей Галактики. Они видны как туманные пятна в южном небе. Большое Магелланово Облако (БМО) находится в созвездии Золотой Рыбы на расстоянии около 170000 световых лет.Малое Магелланово Облако (ММО) - в созвездии Тукана на расстоянии около 210000 световых лет.

Магнитная буря
См.: геомагнитная буря.

Магнитная звезда
Звезда с исключительно сильным магнитным полем. Для группы A-звезд были измерены магнитные поля, которые оказались в тысячу раз сильнее поля Солнца. Эти звезды имеют также пекулярные спектры и поэтому классифицируются как Ap-звезды. Под влиянием магнитного поля линии звездного спектра расщепляются на поляризованные компоненты (эффект Зеемана). Хотя линии обычно слишком широки для того, чтобы расщепленные компоненты можно было разрешить, изменение поляризации вдоль расширенных спектральных линий может быть измерено и использовано для оценки силы магнитного поля.
Почти во всех случаях сила поля и спектральные линии изменяются регулярно. Это можно объяснить, если сделать предположение, что ось вращения и магнитная ось звезд не совпадают.
См.: пекулярная звезда.

Магнитный монополь
Гипотетический дефект в ткани пространства-времени, который ведет себя подобно изолированному северному или южному полюсу магнита и имеет массу, равную 1016 масс протона. Никогда не был обнаружен.
Потенциальное существование магнитных монополей - серьезная проблема, которая возникает в теории "Великого объединения" фундаментальных физических сил. Если бы они существовали в достаточных количествах, то радикально замедлили бы расширение Вселенной, что не соответствует наблюдениям. Проблема дефектов снята в модели раздувающейся Вселенной.

Магнитный хвост
Часть магнитосферы Земли (или любой другой планеты), которая на ночной стороне планеты вытягивается в направлении, противоположном Солнцу, подобно хвосту кометы. Магнитный хвост Земли простирается на ночной стороне от 10 до 80, а, возможно, и до 1000 земных радиусов.

Магнитограф
Инструмент, используемый в солнечной астрономии для картирования силы, направления и распределения магнитного поля на поверхности Солнца.

Магнитометр
Инструмент для измерения силы и направления магнитного поля.

Магнитопауза
Слой земной ионосферы толщиной 100 - 200 км, который отделяет магнитосферу от солнечного ветра.

Магнитосфера
Область вокруг Земли (или любой другой планеты), в пределах которой естественное магнитное поле ограничивается солнечным ветром.

Мазер
В астрономии - процесс излучения в молекулярных облаках, при котором некоторые спектральные линии в микроволновом излучении определенных молекул существенно усиливаются в ходе естественных процессов, подобных процессам в лазерах. Астрофизический эффект мазера впервые был обнаружен в 1965 г. в излучении молекул гидроксила (OH) источника в туманности Ориона. Впоследствии были обнаружены и другие молекулы, дающие подобный эффект, в том числе молекулы воды (H2O), моноксида кремния (SiO), формальдегида (H2CO) и метилового спирта (CH3OH). Слово "maser" (мазер) является акронимом для "microwave amplification by the stimulated emission of radiation" (усиление микроволн посредством индуцированного излучения).
См.: OH-источник.

Малая гантель
Популярное название планетарной туманности M76 (NGC 650) в созвездии Персея. Это - самый слабый объект, включенный в каталог Мессье.

Малая Медведица (Ursa Minor)
Северное созвездие, в котором лежит северный полюс мира. Самая яркая звезда Малой Медведицы, имеющая 2-ю звездную величину, - Полярная звезда, которая находится от полюса на расстоянии менее 1°. Созвездие входило в список Птолемея (ок. 140 г. н.э.). Астеризм из семи звезд Малой Медведицы, который часто называют Малым Ковшом, напоминает Большой Ковш в Большой Медведице, меньше по размерам и слабее.
См.: Таблица 4.

Малая планета
Альтернативное название астероида.
См.: большая планета.

Маленькие зелёные человечки
Название, данное Джослином Б. Бернеллом первым четырем пульсарам до того, как стала ясной их физическая природа, связанная с вращением нейтронных звезд.

Маллардовская космическая научная лаборатория (MSSL)
Институт в Сэррей, к югу от Лондона, который составляет часть Факультета физики и астрономии (один из колледжей Лондонского университета). Деятельность лаборатории в основном ориентирована на изготовление инструментов для астрономических спутников.

Маллардовская радиоастрономическая обсерватория (MRAO)
Радиоастрономическая обсерватория Кембриджского университета. Главный инструмент - интерферометр синтеза апертур на основе земного вращения , который состоит из восьми 13-метровых антенн с 5-километровой базой, расположенной в направлении восток-запад. Он называется Телескопом Райла по имени основателя обсерватории (в 1946 г.) и ее первого директора сэра Мартина Райла, который входил в коллектив ученых, получивших в 1974 г. Нобелевскую премию по физике за развитие принципа синтеза апертур на основе земного вращения. Кроме того, имеется низкочастотный телескоп глубокого обзора с антеннами Яги, работающий на частоте 151 Мгц и использующий тот же принцип.
Обсерватория специализируется на составлении каталогов радиоисточников, и именно там подготовлены Третий, Четвертый, Пятый, Шестой и Седьмой Кембриджские каталоги (сокращенно 3C, 4C и т.д.) источников различной частоты. Эти каталоги привели к открытию многих квазаров и радиогалактик. Первые пульсары были открыты MRAO в 1967 г. Дальнейшее развитие обсерватории в 1990-х гг. предусматривает сооружение оптического интерферометра (КОАСТ).

Малое Магелланово Облако (ММО)
См.: Магеллановы Облака.

Малое молекулярное облако
См.: молекулярное облако.

Малый Ковш
Популярное в США название созвездия Малой Медведицы, описывающее фигуру, образованную ее главными звездами: Бета (β), Гамма (γ), Эта (η), Дзета (ζ), Эпсилон (ε), Дельта (δ) и Альфа (α).

Малый Конь (Equuleus)
Второе из самых маленьких созвездий неба, лежащее у небесного экватора вблизи созвездия Пегаса. Слабое и малозаметное, оно тем не менее входило в число 48 созвездий, перечисленных Птолемеем (ок. 140 г. н.э.). Две самые яркие звезды - 4-й звездной величины.
См.: Таблица 4.

Малый круг
Круг на поверхности сферы, который делит сферу на две неравных части. Малыми кругами являются круги постоянной широты или склонения, отличные от экватора.
См.: большой круг.

Малый Лев (Leo Minor)
Небольшое и очень неприметное созвездие между созвездиями Льва и Большой Медведицы. Это созвездие было введено Иоганном Гевелием в конце XVII в. и содержит только одну звезду ярче 4-й звездной величины.
См.: Таблица 4.

Малый Пес (Canis Minor)
Небольшое созвездие, расположенное вблизи Ориона у небесного экватора. Считается, что как и Большой Пес, оно напоминает одну из собак, сопровождавших охотника Ориона. Созвездие было известно еще Птолемею (ок. 140 г. н.э.). Оно содержит только две заметных звезды, самой яркой звездой является Процион.
См.: Таблица 4.

Малыши
Группа из трех звезд в созвездии Возничего - ε (Эпсилон), ζ (Дзета) и η (Эта).

Мантия
Слой, лежащий ниже коры и покрывающий ядро планеты или спутника. Мантия Земли содержит 65% планетной массы.

Марганцевая звезда (ртутная звезда; ртутно-марганцевая звезда)
Звезда спектрального класса B с пекулярным спектром, в котором исключительно сильны линии марганца и ряда других экзотических элементов, особенно ртути, галлия и иттрия.

"Маринер"
Серия автоматических межпланетных станций, запущенных США в 1960-х и 1970-х гг. в рамках программ исследований планет Меркурия, Венеры и Марса.
"Маринер-2" в 1962 г. осуществил первый успешный пролет вблизи Венеры (в 1967 г. за ним последовал "Маринер-5"). "Маринер-4", запущенный в 1964 г., первым успешно достиг Марса и доказал наличие на этой планете кратеров. Вслед за ним этот путь проделали "Маринер-6" и -7" в 1969 г.
В 1971 г. на орбиту вокруг Марса был запущен "Маринер-9", который передал на Землю свыше 7000 изображений. "Маринер-10" в 1974 г. впервые осуществил одновременное исследование двух планет. В программе его полета были три встречи с Меркурием, в ходе которых было получено 10000 изображений, а также пролет вблизи Венеры. В целом серия "Маринер" обеспечила успешное выполнение семи проектов. АМС этой серии с номерами 11 и 12 были переименованы в "Вояджер-1" и "Вояджер-2".
маркировочная сетка
Перекрестия, или сетка тонких линий, используемые для измерения положений, в частности, в фокальной плоскости окуляра телескопа.

"Марс"
Серия cоветских автоматических межпланетных станций, предназначенных для изучения планеты Марс. Полезная информация была передана на Землю "Марсом-2" и -3 в 1971 г., а также "Марсом-5" в 1974 г. Другие запуски результатов не дали.

Марс
Четвертая от Солнца большая планета. Из-за своего цвета, заметного даже невооруженным глазом, часто называется Красной планетой.
Марс - одна из планет земной группы, с диаметром немного больше половины диаметра Земли. Она долго рассматривалась как единственная (кроме Земли) планета, на которой вероятно существование жизни, что подкреплялось наблюдением полярных ледяных шапок и сезонных изменений. Наблюдатели XIX в., особенно Персиваль Лоуэлл, убедили сами себя в том, что они видят систему прямых русел - каналов, которые могли бы иметь искусственное происхождение. Исследование планеты автоматическими межпланетными станциями фактически положило конец гипотезам о возможности существования в настоящее время жизни на Марсе. Однако изучение метеоритов, имеющих, по всей видимости, марсианское происхождение, вновь породило спекуляции, что по крайней мере в отдаленном прошлом, когда климат был более влажным и теплым, на Марсе могла существовать микроскопическая жизнь. В число успешных американских космических проектов по изучению Марса, входят "Маринер-4" в 1965 г., "Маринер-6" и -7" в 1969 г., "Маринер-9" в 1971 г., а также "Викинг-1" и "Викинг-2" в 1976 г. После отказа в 1993 г. АМС "Марс Обсервер" США запустили "Марс Глобал Сервейор" и "Марс Пэсфайндер". Их встреча с Марсом была запланирована на 1997 г. Высадка человека на Марс может произойти в самом начале XXI в.
Относительно низкая плотность Марса (в 3,95 раза выше плотности воды) позволяет предположить, что в железном ядре содержится всего 25% массы планеты. У планеты имеется слабое магнитное поле, сила которого составляет около 2% от поля Земли. Кора богата оливином и железистыми окислами, которые и придают планете ржавый цвет.
Разреженная марсианская атмосфера содержит 95,3% углекислоты, 2,7% молекулярного азота и 1,6% аргона. Кислород присутствует только в виде следов. Атмосферное давление у поверхности составляет 0,7% давления у поверхности Земли. Однако сильные атмосферные ветры вызывают обширные пылевые бури, которые иногда охватывают всю планету.
На Марсе наблюдаются разнообразные формы облаков и тумана. Рано утром туман сгущается в долинах, а по мере того, как ветры поднимают охлаждающиеся воздушные массы на возвышенные плато, облака появляются и над высокими горами Фарсида. Зимой северная полярная шапка окутывается завесой ледяного тумана и пыли, называемой полярным капюшоном. Подобное явление в несколько меньшей степени наблюдается и на юге.
Полярные области покрыты тонким слоем льда, который, как полагают, является смесью водяного льда и твердой углекислоты. Изображения с высокой степенью разрешения показывают спиральные образования и страты нанесенного ветром вещества. Северная полярная область окружена рядами дюн. Полярные ледяные шапки увеличиваются и убывают в соответствии со сменой времен года. Смена времен года, как и на Земле, обусловлена наклоном оси вращения планеты (на 25°) к орбитальной плоскости.
Марсианский год примерно вдвое длиннее земного, так что времена года также более длинные. Однако из-за относительно высокого эксцентриситета орбиты Марса они имеют неравную продолжительность: лето в южном полушарии (которое наступает, когда Марс находится около перигелия) короче и жарче лета на севере. Наблюдаемые с Земли сезонные изменения внешнего вида деталей объясняются физическими и химическими процессами.
Если мысленно разделить планету пополам большим кругом, наклоненным на 35° к экватору, то между двумя половинами Марса имеется заметное различие в характере поверхности. Южная часть имеет в основном древнюю поверхность, сильно изрытую кратерами. В этом полушарии расположены главные ударные впадины - равнины Эллада, Аргир и Исиды. На севере доминирует более молодая и менее богатая кратерами поверхность, лежащая на 2-3 км ниже. Самые высокие области - большие вулканические купола гор Фарсида и равнины Элизий. Над обеими областями доминируют несколько огромных потухших вулканов, самым большим из которых является гора Олимп.
Эти вулканические области расположены на восточном и западном концах огромной системы каньонов - долины Маринер, которая простирается на 5000 км вдоль экваториальной области и имеет среднюю глубину 6 км. Полагают, что она возникла в результате разлома, связанного с надвигом купола Фарсида.
Имеются свидетельства (сохранившиеся русла потоков), что на поверхности Марса в свое время существовала жидкая вода. Кажется, что эти русла, идущие от долины Маринер, возникли в ходе какого-то внезапного наводнения. Кроме того, в сильно изрытых кратерами областях найдены извилистые следы высохших рек со многими притоками.
Марс имеет два маленьких естественных спутника - Фобос и Деймос, которые находятся близко к планете на почти круговых орбитах, лежащих в экваториальной плоскости. Увидеть их с Земли очень трудно. Они настолько отличны от Марса, что, вполне вероятно, представляют собой захваченные астероиды.
См.: Таблица 5 и Таблица 6.

"Марс Глобал Сервейор" ("Марсианский глобальный исследователь ")
Проект NASA по изучению Марса, пришедший на смену потерпевшему неудачу "Марс Обсерверу". Запуск аппарата состоялся 7 ноября 1996 г., причем достижение планеты планировалось на сентябрь 1997 г. АМС была успешно выведена на высокую эллиптическую орбиту вокруг Марса 11 сентября 1997 г. В последующие месяцы она должна быть постепенно переведена на почти круговую околополярную орбиту, с которой с марта 1998 г. по январь 2000 г. будет выполняться систематическое картирование планеты. Для изменения орбиты станции применяется метод "аэроторможения", при котором для уменьшения орбитальной скорости станции используется трение марсианской атмосферы. "Марс Глобал Сервейор" сконструирован так, что после завершения проекта картирования он будет работать как спутник связи.

"Марс Обсервер" ("Марсианский наблюдатель")
Беспилотный проект NASA по изучению Марса. АМС "Марс Обсервер" была успешно запущена в 1992 г., но по достижению Марса в сентябре 1993 г. была потеряна (предположительно, разрушилась). Станция должна была выйти на орбиту вокруг Марса и в течение одного марсианского года вести детальное картирование и наблюдения. При полете на Марс АМС "Марс Глобал Сервейор" были заменены шесть из восьми пропавших инструментов.

"Марс Пэтфайндер" ("Марсианский следопыт")
Проект NASA по изучению Марса. АМС "Марс Пэтфайндер" была запущена 4 декабря 1996 г. и 4 июля 1997 г. достигла планеты. Главной целью проекта была проверка дешевых средств запуска космического аппарата и нового транспортного средства, так называемого "ровера", который должен был опуститься на марсианскую поверхность. Этот 10-килограммовый миниатюрный "ровер" был назван "Соджорнером" (т.е."Временным жителем"). Он был оборудован специальными средствами для измерения химического состава поверхностных пород и почвы и фотографирования окрестностей места посадки в долине Арес.
Новый метод посадки спускаемого аппарата предусматривал гашение удара с помощью наполненных воздухом мешков, которые перед окончательной остановкой обеспечивали несколько "подскоков". Характеристики как спускаемого аппарата, так и самого ровера превзошли все ожидания, и они смогли продолжить работу и после истечения минимального запланированного срока в 7 марсианских дней ("солей"). На Землю были переданы панорамные снимки окружающего ландшафта, и "Соджорнер" успешно совершил несколько экспедиций, пройдя в общей сложности около 80 м. Инструменты спускаемого аппарата вели мониторинг атмосферных условий на поверхности. В процессе парашютируемого спуска были измерены и параметры марсианской атмосферы.
После прибытия на Марс основная станция спускаемого аппарата была переименована в Мемориальную станцию Сагана в честь американского ученого-планетолога Карла Сагана, который скончался в 1997 г.

"Марс Сервейор-1998" ("Марсианский исследователь-1998")
Проект NASA по запуску двух космических аппаратов к Марсу, намеченному на декабрь 1998 г. и начало января 1999 г. Сначала будет произведен запуск орбитального аппарата, а примерно месяцем позже - запуск спускаемого аппарата. Орбитальный аппарат предназначен для продолжения глобальной разведки планеты, начатой "Марс Глобал Сервейором". Второй аппарат должен опуститься около южной полярной области. Особое внимание в проекте уделяется изучению марсианского климата и взаимодействия между атмосферой и поверхностью.

"Марс-96"
Международный проект, выполнявшийся под руководством Российского космического агентства, который предусматривал запуск АМС на Марс, но после неудачного запуска в ноябре 1996 г. был свернут.

Маскон
Область аномально сильного гравитационного поля на Луне. Термин представляет собой сокращение обозначения "массовая концентрация". Масконы, как предполагается, указывают на присутствие пород, плотность которых выше средней, хотя пока нет общего мнения относительно их происхождения. Эти области имеют почти круглую форму и связаны с лунными морями.

Масса Джинса
Минимальная масса межзвездного облака, при которой возмущение плотности под действием собственной гравитации уменьшается.

Массив
Совокупность связанных радиолокационных антенн, которые вместе составляют радиотелескоп

Матильда
Астероид 253, изображение которого было получено космическим аппаратом проекта Околоземное встречи с астероидами ("NEAR") 27 июня 1997 г. с пролетной траектории. Матильда -равномерно темный астероид типа C с альбедо, равным только 3%. По данным, полученным с "NEAR", средний диаметр астероида равен 52 км. Во время встречи на освещенной Солнцем стороне астероида были идентифицированы пять кратеров с диаметром более 20 км. Был измерен и период вращения астероида, который оказался неожиданно большим (17,4 суток).

Маунт-Байжлоу
См.: Обсерватория Стюарта.

Маунт-Вилсоновская обсерватория
Обсерватория вблизи Пасадены, штат Калифорния (США), расположенная на горе Маунт-Вилсон (на высоте 1750 м). Первым инструментом этой обсерватории был горизонтальный солнечный телескоп, введенный в действие в 1904 г. по проекту Джорджа E. Хейла. В течение нескольких последующих лет были добавлены два башенных телескопа, сначала "60-футовый", а затем - в 1910 г. - "150- футовый". Сооружение 1,5-метрового отражательного телескопа было начато в 1904 г. и закончено в 1908 г. Зеркало для телескопа Хейлу подарил его отец в день рождения. Этот телескоп оставался самым большим в мире до открытия в 1917 г. 2,5-метрового Телескопа Хукера.
До 1985 г. обсерватория эксплуатировалась Институтом Карнеги. С 1948 по 1970 гг. она имела общую администрацию с Паломарской обсерваторией и они носили объединенное название "Маунт-Вилсоновская и Паломарская обсерватории". В период 1970-1980 гг. название было заменено на "Обсерватории Хейла". В 1980- 1985 гг. Маунт-Вилсоновская обсерватория стала частью объединения "Обсерватории Маунт-Вилсоновская и Лас-Кампанас". Институт Карнеги прекратил свою работу в Маунт-Вилсоновской обсерватории в 1985 г., когда Телескоп Хукера на некоторое время вышел из строя. С 1985 г. солнечные башни и 60-дюймовый телескоп используются Гарвардским университетом и астрономическими отделениями Южнокалифорнийского университета и Калифорнийского университета в Лос-Анджелесе. Впоследствии Телескоп Хукера был модернизирован и в 1993 г. снова введен в действие.
На Маунт-Вилсон размещены также несколько оптических и инфракрасных интерферометров. Самый большой интерферометр, пуск которого намечен на 1998 г., - массив CHARA Университета штата Джорджия. (CHARA - сокр. Center for High Angular Resolution Astronomy - Центр астрономии большого углового разрешения.) Он состоит из пяти 1,0-метровых телескопов, расположенных в форме буквы "Y" на круге 400- метрового диаметра.
См.: Обсерватория Лас-Кампанас.

Маунт-Грэхемская международная обсерватория
Обсерватория, расположенная в местности Маунт-Грэхем около Сэффорда в юго-восточной части штата Аризона (США). Первые два телескопа, которые были установлены в этом месте, - 1,8-метровый Ватиканский Телескоп усовершенствованных технологий (ВАТТ) и Субмиллиметровый телескоп Генриха Герца. Здесь будет размещаться также Большой бинокулярный телескоп.

Маунт-Леммон
См.: Обсерватория Стюарта.

Маятник Фуко
Длинный свободно качающийся маятник, который Фуко в 1851 г. предложил использовать для демонстрации вращения Земли. При отсутствии возмущений плоскость, в которой происходит колебание маятника, медленно поворачивается. Скорость поворота составляет 15 ? sin? градусов за час звездного времени, где ? - географическая широта.

Мегапарсек (Мпс)
Единица измерения расстояния, равная одному миллиону парсеков.

Медонская обсерватория
См.: Парижская обсерватория.

Межамериканская обсерватория Сьерро-Тололо
Обсерватория в Чили, составляющая часть Национальных оптических астрономических обсерваторий США. Ее основные службы базируются в окрестностях города Ла-Серена, в 480 км к северу от Сантьяго, в горной местности в 70 км от побережья на высоте 2200 м. Самый большой инструмент - 4-метровый Телескоп Виктора М. Бланко, полностью идентичный телескопу в Китт-Пик в Аризоне. Среди шести других приборов, размещенных в обсерватории, - 1,5-метровый, 1,0-метровый и 92-сантиметровый рефлекторы. Кроме того, там же находится 1,2-метровый радиотелескоп Чилийского университета.

Межгалактическая среда
внутренняя среда скопления галактик.

Международная ассоциация темного неба
Организация, основанная в США для борьбы с световым загрязнением.

"Международная лаборатория гамма-излучения" ("INTEGRAL")
Европейско-Российская орбитальная обсерватория (International Gamma Ray Laboratory - INTEGRAL) для исследований в области спектроскопии и точного отображения источников гамма-излучения. Запуск с помощью российской ракеты-носителя "Протон" запланирован на 2001 г.

Международное атомное время (TAI)
Непрерывная шкала измерения времени, получаемая в результате сопоставления атомных эталонов времени во многих странах, которое проводится Международным Бюро мер и весов.
См.: атомные часы.

Международные годы спокойного Солнца (IQSY)
Период 1964-5 гг., в течение которого после успеха предыдущего Международного геофизического года была организована скоординированная программа международных геофизических исследований, совпадающая с периодом минимальной солнечной активности.

"Международный астрономический союз" (IAU)
Организация, сформированная в 1919 г. с целью международного сотрудничества в области астрономии. Она состоит из государств-членов (представленных национальными академиями или другими неправительственными учреждениями) и около 8000 индивидуальных членов. Вместе с подобными организациями в других отраслях науки, IAU принадлежит к Международному совету Научных союзов, штаб которого размещается в Париже.
Историю создания IAU можно проследить, начиная от международного сотрудничества по проекту "Карта Неба". В 1887 г. Постоянная комиссия по фотографической карте неба распространила свои интересы и на другие разделы астрономии и поэтому может считаться родоначальницей IAU.
IAU признан в качестве высшей международной инстанции в решении астрономических вопросов, требующих сотрудничества и стандартизации, таких как официальное наименование астрономических тел и деталей на них. Под его покровительством работают Центральное бюро астрономических телеграмм и Центр малых планет, расположенные в Смитсоновской астрофизической обсерватории. IAU также содействует проведению астрономических наблюдений в развивающихся странах. Каждые три года собирается Генеральная ассамблея IAU, регулярно организуются симпозиумы и коллоквиумы специалистов. Текущая организационная работа проводится Комиссиями и Рабочими группами.

Международный геофизический год (IGY)
Период с 1 июля 1957 до 31 декабря 1958, в течение которого была организована скоординированная программа международных геофизических исследований, совпадающая с периодом максимума солнечной активности.

Международный кометный зонд" ("ICE")
"Космический аппарат (International Cometary Explorer - ICE), запущенный в 1978 г. под названием "ISEE-3" (International Sun–Earth Explorer - Международный солнечно- земной зонд). Затем в программу полета были внесены изменения с тем, чтобы в сентябре 1985 г.он прошел сквозь хвост кометы Джакобини-Циннера, а позже (в марте 1986 г.) провел наблюдения кометы Галлея с расстояния 28 млн. км.

"Международный солнечно-земной зонд" ("ISEE")
Название трех космических аппаратов (International Sun–Earth Explorer - ISEE), созданных NASA и ESA для изучения влияния Солнца на околоземное пространство и магнитосферу. "ISEE-1" и "ISEE-2" были запущены в 1977 г. "ISEE-3", запущенный в 1978 г., позже функционировал как Международный кометный зонд ("ICE").

"Международный ультрафиолетовый зонд" ("IUE")
Астрономический телескоп (International Ultraviolet Explorer - IUE) с 45-сантиметровым первичным зеркалом, предназначенный для работы в ультрафиолетовой области спектра, который был запущен на околоземную орбиту в 1978 г. в порядке реализации объединенного проекта NASA–ESA–Великобритании. Зонд проводил успешные наблюдения в течение 18 лет, прекратив работу в сентябре 1996 г.

Межзвёздная пыль
Маленькие частицы в межзвездной среде. Частицы межзвездной пыли (размером 0,005 - 1 мкм) в межзвездной среде обычно смешаны с газом. Составляя меньше 1% массы межзвездной среды, пыль поглощает гораздо больше света и генерирует гораздо больше инфракрасного излучения, чем газ. Это вызывает как межзвездную экстинкцию, так и межзвездное покраснение. Свет звезд, рассеиваемый частицами пыли, создает отражающие туманности.
Поглощение пылью энергии света звезд поднимает ее температуру до нескольких десятков градусов выше абсолютного нуля. При таких температурах пыль является источником теплового излучения, которое достигает максимума интенсивности в инфракрасном диапазоне. Пыль, нагретая до температур выше 1500 K, разрушается.
Маловероятно, что вся межзвездная пыль состоит из одного и того же вещества. Предполагается, что распространены графит (обычная форма углерода), а также силикаты железа, алюминия, кальция и магния, хотя широкие спектральные полосы, порождаемые пылью, трудно идентифицировать с достаточной точностью. Наличие эффектов поляризации доказывает, что по крайней мере некоторые из частиц не имеют сферической формы. Большая часть пыли, как полагают, порождается при оттоке вещества от холодных красных гигантов. По мере того, как с увеличением расстояния от звезды газ охлаждается, происходит конденсация твердых веществ. Обнаруженное у таких звезд инфракрасное излучение показывает, что они и в самом деле окружены оболочками пыли. Вещество может конденсироваться в зерна также внутри молекулярных облаков.

Межзвёздная среда
Диффузное вещество в пространстве внутри галактики между отдельными звездами, которые обычно отстоят друг от друга на несколько световых лет. В нашей Галактике масса вещества в межзвездной среде составляет, по некоторым оценкам, по крайней мере одну десятую от массы звезд. Все это вещество сконцентрировано в центральной области Галактики и в ее четырех спиральных рукавах. Обычно спиральные галактики содержат значительное количество межзвездного вещества, а эллиптические - совсем немного или даже не содержат его вообще.
Между звездами и межзвездной средой происходит непрерывное взаимодействие, которое приводит к возникновению целого ряда разнообразных компонентов: темных облаков газа и пыли, областей ионизированного водорода и нейтрального водорода, молекулярных облаков, глобул, а также очень горячего разреженного газа и высокоэнергичных частиц космических лучей.
Межзвездные облака - это области звездообразования, однако они богаты и веществом, выброшенным сверхновыми и порожденным другими звездными процессами, связанными с потерей массы. На масштабах в тысячи световых лет в структуре межзвездной среды, вероятно, доминируют процессы слипания остатков сверхновых. Окружающие их массивные оболочки в конечном счете охлаждаются и уплотняются, превращаясь в небольшие облака. Такие облака могут взаимодействовать и сталкиваться, слипаясь или, наоборот, распадаясь.
См.: астрация, Местный пузырь.

Межзвёздная экстинкция
Ослабление света от удаленной звезды в результате поглощения и рассеяния межзвездной пылью. Этот эффект уменьшается с увеличением длины волны. Экстинкция для красного света менее эффективна, чем для синего, в результате чего возникает явление межзвездного покраснения. Яркость синего света от звезды вблизи центра Галактики уменьшается межзвездным веществом по нашему лучу зрения примерно на 25 звездных величин. Для инфракрасного и радиоизлучения, у которых длины волн больше, чем у видимого света, межзвездная среда все более и более прозрачна. В ультрафиолете экстинкция продолжает увеличиваться к более коротким длинам волны. Это явление изучалось вплоть до длины волны 100 нм.

Межзвездное покраснение
Видимое покраснение света удаленных звезд из-за рассеяния, которое вызывается межзвездной пылью. Степень рассеяния и поглощения света в межзвездной среде зависит от длины волны: синий свет ослабляется сильнее, чем красный. В результате цвет звезд, наблюдаемых сквозь межзвездное вещество, измененяется и кажется более красным. Степень покраснения возрастает с увеличением количества вещества, лежащего по лучу зрения. Подобным эффектом в атмосфере Земли объясняется покраснение Солнца, когда оно находится близко к горизонту.

Межзвездные молекулы
Молекулы, присутствующие в межзвездной среде, особенно в молекулярных облаках. Они могут "выжить" только в том случае, если будут защищены от разрушительного влияния ультрафиолетового излучения звезд, и поэтому обычно их находят в плотных межзвездных или околозвездных облаках. До 1963 г. единственными известными межзвездными молекулами были молекулярные соединения CH (метилидин), CH+ и CN (циан), спектры которых расположены в видимом диапазоне. В 1963 г. было выяснено, что источником радиоизлучения на длине волны 18 см является гидроксил (ОH). Начиная с 1968 г. было идентифицировано свыше 90 различных молекул (прежде всего на основе их спектров в диапазоне миллиметровых волн). Чаще всего они представляют собой простые органические молекулы.

Межзвёздный полет "Вояджеров"
Продолжение полета "Вояджера-1" и "Вояджера-2" после завершения исследования Солнечной системы. Как ожидается, источники энергии на обеих АМС будут работать до 2020 г. Бортовая аппаратура АМС будет продолжать измерение магнитного поля и обнаружение частиц в гелиосфере. Ожидается, что впервые будут получены данные о гелиопаузе, где солнечный ветер сливается с межзвездной средой.

Межпланетная среда
Среда между планетами в Солнечной системе, содержащая межпланетную пыль, электрически заряженные солнечные частицы и нейтральный газ из межзвездной среды.
Заряженные частицы представлены электронами, протонами и гелиевыми ядрами (альфа-частицы), которые, устремляясь от Солнца, образуют солнечный ветер. Атомы нейтрального водородного и гелиевого газа поступают в окрестность Солнца из межзвездной среды. Из-за влияния солнечного ионизирующего излучения время жизни этих атомов в нейтральном состоянии (на расстоянии от Солнца до Земли) составляет около двадцати дней.

Межпланетные мерцания
Колебания мощности сигнала, получаемого от удаленных радиоисточников, наблюдаемых по лучу зрения, близкому к Солнцу. Мерцания вызываются неоднородностями солнечного ветра.

Мезосидериты
Класс железо-каменных метеоритов.

Мезосфера
Часть атмосферы Земли, расположенная выше стратосферы на высотах от 50 до 85 км, в который температура с высотой уменьшается, достигая -90° C у верхней границы (мезопаузы).

Мельпомена
Астероид 18 диаметром 162 км, открытый Дж. Р. Хиндом в 1852 г.

Мера вращения
Для радиоисточника поляризованного излучения - показатель, определяющий степень вращения вектора поляризации за время движения излучения от источника до наблюдателя. Степень вращения пропорциональна напряженности магнитного поля в направлении, перпендикулярном лучу зрения, и электронной плотности в направлении луча зрения. Мера вращения зависит от квадрата длины волны, так что ее величину для некоторого источника можно определить, если наблюдать поляризацию излучения на нескольких длинах волны. Изучение меры вращения является главным источником информации о силе и направлении магнитного поля в Галактике.

Мера дисперсии (МД)
Величина, характеризующая запаздывание во времени поступления радиоимпульсов пульсара различной частоты, которое объясняется присутствием электронов в межзвездной среде. Если плотность электронов известна из независимых измерений, то мера дисперсии пульсара может использоваться для вычисления расстояния до него.

Мерак (Бета Большой Медведицы; β UMa)
Одна из двух звезд Большого Ковша в Большой Медведице (вторая - Дубхе), называемых Указателями. Звезды в Большом Ковше были обозначены в соответствии с их расположением, а не яркостью. В действительности Мерак - самая яркая звезда в созвездии (звездная величина 2,4). Это A-звезда; ее название имеет арабское происхождение и означает "чресла".

Ссылка на страницу: Большой астрономический словарь
Теги: Большой астрономический словарь
Просмотров: 155 | | Рейтинг: 0.0/0 Символов: 53337

ТОП материалов, отсортированных по комментариям
ТОП материалов, отсортированных по дате добавления
ТОП материалов, отсортированных по рейтингу
ТОП материалов, отсортированных по просмотрам

Всего комментариев: 0
avatar


close